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The effect of linear thermal expansion on 
the temperature coefficient of resistance of 
double-layer thin metallic films 

M. A. EL HITI ,  M. A. A H M E D  
Department of Physics, Faculty of Science, Tanta University, Tanta, Egypt 

A general theoretical expression for the temperature coefficient of resistance of double-layer 
thin metallic films, based on the well known Fuchs-Sondheimer model, is derived. This 
expression includes the linear thermal expansion coefficients and Poisson's ratios of the 
double layers and the substrate, also the film dimensions and temperature coefficient of resist- 
ance of the double-layer thin film, with and without the thermal expansion of both the film 
layers and the substrate. Numerical calculations are carried out for gold-silver double-layer 
films deposited on a glass substrate, where variations in the temperature coefficient of resist- 
ance depending on thermal expansion are studied as a function of reduced film thickness. The 
computed numerical results, using the derived new expression for the temperature coefficient 
of resistance of the double-layer thin metallic films, show that the thermal expansion 
decreases the value of the temperature coefficient of resistance. 

1. Introduct ion  
The temperature coefficient of resistance of single- 
layer thin metallic films has been studied theoretically 
[1-6] as well as experimentally [7-15]. All these studies 
are based on the well known Fuchs-Sondheimer model 
[16, 17] and its developments. The temperature coef- 
ficient of  resistance, fir, is a very important parameter 
which is specified for high-performance thin-film resis- 
tors [18]. The Fuchs-Sondheimer model for electrical 
conductivity was developed and modified for appli- 
cation to double-layer thin metallic films [19, 20]. A 
general theoretical expression for the temperature 
coefficient of resistance of double-layer thin metallic 
films has been derived [21] based on the Fuchs- 
Sondheimer model for electrical conductivity [16, 17] 
for single-layer and double-layer films [19, 20], taking 
into consideration the bulk conductivity, fir, and 
dimensions of the double layers. In these previous 
studies [21] for fir, the linear thermal expansion of the 
substrate and the film layers were neglected for simpli- 
city, by assuming that the linear thermal expansion 
coefficients of  the film layers and the substrate are 
nearly the same. When the thermal expansion of each 
film layer differs from that of the substrate and from 
each other, then thermal strains cannot be neglected 
[22], and must be taken into account to derive a more 
exact expression for the temperature coefficient of 
resistance. 

The aim of this study is to derive a more exact 
general expression for the temperature coefficient of  
resistance of double-layer thin metallic films, taking 
into account the linear thermal expansion and the 
thermal strains, as well as all the other parameters 
which were taken into consideration during the 
previous derivation of the temperature coefficient of 
resistance /~RF for negligible thermal expansions. 
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2. Pre l iminary  d e f i n i t i o n s  
Consider a double-layer thin metallic film consisting 
of a base layer and a superimposed overlayer from two 
different metals deposited on a non-metallic substrate, 
S, as shown in Fig. 1. The surface of the film is parallel 
to the plane z = 0, the base layer with surfaces at 
- = 0 and z = - 4  containing metal 1, while the 
overlayer at z = 0 and z = t 2 contains metal 2, where 
4 and t 2 are the thickness of the base and overlayer 
respectively. The film layers are supposed to have the 
same length l and width w. If the interface between the 
two layers is ideally smooth, the conduction electrons 
impacting on the interface have two options - reflec- 
tion or refraction. The impacting electrons may be 
reflected back according to the law of reflection, with 
a probability 0, and/or passed through the interface 
according to the law of refraction, with a probability 
Q. Suppose that the conduction electrons in the layers 
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Figure 1 The geometry of the double-layer thin metallic film depo- 
sited onto a non-metallic substrate. The arrows represent the reflec- 
tion and refraction of the impacting electrons on the surface and 
interface. 
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have two different effective masses, m~ and m2, Fermi 
velocities. Fermi velocities v w and vw,  bulk mean free 
paths 20j and 2o2 and densities n~ and n2. 

For a firmly attached film-substrate system, it is 
assumed that the thermal expansion of the substrate Zs 
and the thermal expansion of the film length and 
width are identical and determined by the expansion 
coefficient of the substrate Z~ and given by the relation: 

dl dw 
- - z~dT (1) 

l w 

where dT is the differential variation in temperature. 
The differential variation in temperature d Tinduces 

a differential variation in the film length, width and 
thickness beside the thermal strains induced in the 
length es~, width &2 and thickness e~3 of the film, 
which are given by the following relations as: 

dl 
= zrdT + g T l  = ( )~s  - -  Zf) dT (2) 

dw 
- z r d T +  ST2 = (Z~ --  zr)dT (3) 

w 

dt 
- Z~ d T  (4 )  

t - -  ~ T 3  ~---- 2#f l f  /.tf 

where Zf and )~;/~f and #~ are the linear thermal expan- 
sion and the Poisson's ratio of the film and substrate 
respectively. The temperatfire coefficient of resistance 
flay and of resistivity fly of the film and flRO and rio of 
the bulk are represented, respectively, as: 

1 dRy 1 dev 1 d0-v 
fiRv - Rv dT  fly = Ov d T  av dT  

(5) 

1 d R o  1 d o  0 1 do- 0 
fiRo - Ro d T  rio - 0o d T  - a o d T  

(6) 

where Rv, R0; 0F, 00 and aV, 0-0 are the resistance, 
resistivity and conductivity of the film and the bulk 
material, respectively. 

3. Effect of thermal expansion 
The electrical conductivity of a double-layer thin 
metallic film [20] is given by: 

t j  
a v  - - -  0 - o l F j ( K ,  P ,  Q )  

tl 4- t2 

4- t 2  0-o2F2(K ' p ,  Q) (7) 
tl 4- t2 

where 0-01, ~ and t~, t2 are the bulk electrical conduc- 
tivity and the thickness of the base and overlayer films, 
"respectively. The functions F~(K, P, Q) and F~(K, P, Q) 
are defined in [20, 21] and for simplicity can be written 
as F~ and ~ ,  respectively. Equation 7 can be rewritten 
as follows: 

RF 1 W ( t2 ao2 F2~ 
= -[ fiao, F, 1 + t, ao,F1] (8) 

Taking the logarithmic differentiation of Equation 8 
with respect to temperature, then the temperature 

coefficient of resistance of the double-layer thin metal- 
lic film flRvrs, when taking into account the thermal 
strains or thermal expansions of the film layers and the 
substrate, respectively, can be written as: 

tlaolFlfiol 
f l R F T S  ~ -  t~ro~F~ 4- t2(~o2F 2 

x ( l  d l n F ,  2#1 Z, -- Zs ) 
floidT + /30~ 1 ~1 

t2 %2 F2 rio2 + 

B u t  

and 

tl~ojFl 4- t20-o2F 2 

( x 1 d In F2 + (9) 
flo2 d T rio2 l 

d In FI 

dT 
d In F l . d In KE 

d In K l dT 

d l n F i  d l n K  I d l n K .  
+ d In K~" d In K 2 " dT ~(10) 

- ( 1 1 )  
d In/(2 {flo2 - 2#2 Z2 ~ Z~'] 

\ 1 - ~2J 

where KI = tl/2ol and K 2 = t2/202 are the reduced 
thickness of the base and overlayer. In the same way, 
d l n F 2 / d T  and d l n K 2 / d l n K  I can be given by 
changing in Equations 10 and l l  the index 2 by 1 and 
the index 1 by 2, respectively. Substituting for d In F t / 
dT and d In K~/d In/(2 from Equations 10 and 11, 
and for d In Fz/dTand  d In K2/d In KI into Equation 
9, fiRFTS can be written as: 

tl%tF~ + t2ao2F2 d In 

2t2ao2F2f102(  d In F2) 
+ 1 

tlo-olF1 + t2~Yo2F 2 d In 

tlaolFlflOl + 
t~ao~F~ + t2ao2F2 

x 1 + 2 d l n K i  fl01 1 - /Zl 

t2 ~r02 F2 f102 + 
tlaolFi + t2O'o2F 2 

x 1 + 2 d In K 2 fi02 I /~2 

(12) 

Using the general expression for the temperature 
coefficient of resistance, when the thermal expansion 
was negligible as derived before [21], fiRV takes the 
form: 

lleYolFlflOl (1 d l n F l )  
13Rv = tlaolF1 + t2ao2F2 d In Ki 

t2ao2F2fi02 (1 d l n F 2 )  (13) 
+ tlCrolFl + t2ao2F2 d In 
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Figure 2 The reduced temperature 
coefficient of resistance with ther- 
mal expansion flRVrS/fl01 and 
without thermal expansion flRv/ 
fl01 as a function of the reduced 
film thickness K~ for K 2 = 0.1. 

and 

and 

where 

= 

d l n F i  1 - FI - W1 

d In K 1 F1 

d l n F 2  1 - F2 - W2 

d l n K 2  F2 

3 0 Ii dx,(x, - x~) - ~  [(1 - A ) { ( 1  - P ,o )  

+ O - ' ( l  + PloA)(Xl + CQY~)}] (15) 

As defined in [21]; W2 can be defined by changing 
the index 2 by 1 and 1 by 2 in Equation 15. Using 
Equations 12, 13, 14 and 15: 

flRFTS z 2 f l R F -  

X 

tlffolFlflOl 
tl~roIFI + f2o'02F2 

1 + fi01 1 #1 El  

tlaolFl + 120-02F2 

{ 2#2 ~2 ~-~__s I1 2(1 -- W2).I } 
1 + f102 1 - - # 2  F2 

4. Numer ica l  results 
The gold overgrowth film deposited onto the glass 
substrate, which was predeposited by silver films, 
forms the double-layer thin metallic film which is 
considered for these numerical calculations. Gold and 
silver have the same crystal structure, and the interface 
between these layers has a negligible effect on the 
specularity reflection scattering of the conduction 

electrons, which means most of  them are transmitted 
through the interface. That is, the reflection specularity 
p a r a m e t e r s  PI2 and P21 a re  both nearly equal to zero, 
and the refraction parameter  Q is nearly equal to 
unity. The parameters P~0 and P20 are taken to be 
totally specular (Pi0 = 1) and totally diffuse (P20 = 0), 

(14) respectively. 

For numerical analysis, the following constant para- 
meters are used as listed in [23], where the subscripts 
1, 2 and s are related mainly to the over-layer gold, 
base-layer silver and the substrate, respectively: 

linear thermal expansion 

ZI = 18.9 x 10 -6, Z2 = 13.9 x 10 -6,  Zs --- 6 x 10 -6 

Poisson's ratio #1 = 0.38, #2 = 0.42, #~ = 0.3 

bulk conductivity 

a01 = 4.55 x 105 , or02 = 6.21 x 10 s 

bulk mean free path )v0~ = 523 A, 202 = 390 A 

bulk temperature coefficient of  resistivity 

fi01 = 41 x 10 -4,  f102 = 34 x 10 4 

The numerical results of  the temperature coefficient of  
resistance fiRVTS/flol as a function of the reduced thick- 
ness KI, as calculated from Equation 16, are shown in 

(16) Fig. 2 for K~ = 0.1 and in Fig. 3 for K, = 0.01. In 
Figs 2 and 3, fiRFTS/fiOI was  compared with flRF/J~0I to 
show the role of  thermal expansion for the tempera- 
ture coefficient of  resistance of double-layer thin 
metallic films. It is clear that fiRvvs has the same 
character as/~Rv, but with smaller values. 

5. Conclusion 
The curves of  Figs 2 and 3 exhibit the following 
features. 
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Figure 3As Fig. 2, fo rK 2 = 0.0l. 

0.~ 

0.7 

0.6 

u_ 
0.5 

0.4 

0., z 

0.21 
#RFrS 

0.1 -1 
10 

1. The deposition of an overlayer of gold onto 
a base layer of silver reduces the values of fief and 
flRws, and this decrease is markedly dependent on the 
thickness of the overlayer. This result is in good agree- 
ment with other theoretical and experimental results 
[21, 24]. 

2. The temperature coefficient of resistance with 
effective thermal strains flRVTS exhibits a size effect 
such as flRv, without thermal strains. But this size 
effect is nearly vanishing for large values of the reduced 
thickness K~ independent of 1(2. 

3. The introduction of the effect of  thermal strains 
as a result of the difference in thermal expansions of  
the film layers and the substrate reduces the value of  
the temperature coefficient of resistance of  the double- 
layer thin metallic film flRv to become flRvvs. 

4. flRFvS is positive and increases with the reduced 
thickness of the overlayer Kl for a reduced thickness 
of the base layer K2 = 0.01. This behaviour is the 
s a m e  a s  f lRF"  

5. flRvvs is negative for K1 < 0.1, approaches zero at 
Kl = 0.1, and becomes positive for Kl > 0.1. This 
occurs for K2 = 0.1. The occurrence of a negative 
flRFrS can be related to many causes such as oxidation, 
trapped impurities, insulation of the grain boundaries 
and small islands, defects, and the variation in thermal 
expansion of the film materials and the substrate. The 
occurrence of  negative flRvvs here is related mainly to 
the difference in thermal expansions or thermal strains 
of the double layers of the film and substrate as studied 
for thin films of one material [4, 13, 22, 25, 26, 27]. It 
is clear that negative DRFTS occurs for small values of  
film thickness. Therefore it is thought [28] that the 
temperature coefficient of resistance TCR is positive 
and approaches the bulk Value for thickness of  
100 rim. For 10 nm, TCR decreases with thickness and 
finally approaches zero, becoming negative for film 
thicknesses of few nanometres. 

6. Thus we conclude that Equation 16 is an accept- 
able theoretical expression for the temperature coef- 
ficient of  resistance of  the double-layer thin metallic 
film when the variations in resistance with strain are 
temperature-dependent. 
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